:')

Check for
Updates

Velo: Exploring Animal Behavior Modeling through Hybrid
Robotics-Simulation Learning Experience

Kritphong Mongkhonvanit*
Tyler Hummer*

John Chen
kritphong@u.northwestern.edu
tylerhummer2027@u.northwestern.edu
civitas@u.northwestern.edu
Northwestern University
Evanston, Illinois, USA

ABSTRACT

Velo is a learning experience that combines robotics and simulation
to help learners understand and apply a simple yet powerful pro-
gramming model inspired by Braitenberg vehicles. In this model,
programs are constructed only by making connections between
sensors and actuators. Despite this simplicity, it is possible to achieve
complex behaviors similar to that of animals. Velo is designed to
be used in a curriculum that aims to help learners not only learn
this programming model, but also the process of analyzing an ex-
isting (animal) behavior and breaking it down into a form useful
for programming.

CCS CONCEPTS

« Computer systems organization — Robotics; + Applied com-

puting — Interactive learning environments; Computer-assisted

instruction; - Software and its engineering — Visual languages;
Domain specific languages.

KEYWORDS

Braitenberg vehicles, physical computing, computer science educa-
tion, visual programming language, learning, education

ACM Reference Format:

Kritphong Mongkhonvanit, Tyler Hummer, and John Chen. 2023. Velo:
Exploring Animal Behavior Modeling through Hybrid Robotics-Simulation
Learning Experience. In Interaction Design and Children (IDC ’23), June
19-23, 2023, Chicago, IL, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3585088.3594489

1 INTRODUCTION

Children like animals. According to Kellert [6], children tend to
have humanistic attitudes towards animals, meaning that they have
“primary interest and strong affection for individual animals”. More-
over, children’s level of knowledge about animals were found to be

“Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IDC °23, June 19-23, 2023, Chicago, IL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0131-3/23/06.

https://doi.org/10.1145/3585088.3594489

701

comparable to, or even exceed, that of adults in many areas. Not
only can this existing knowledge and interest serve as an excel-
lent basis for further learning about animals, it can also potentially,
with appropriate scaffolding, serve as a starting point to learn about
other topics.

We present Velo, a learning experience that combines robotics
and simulation to help bridge children’s interest in animals with
computer programming and robotics. It combines robotics and
simulation to help learners understand and apply a simple, yet pow-
erful, programming model inspired by Braitenberg vehicles [1]. In
this model, programs are constructed only by making connections
between sensors and actuators. Despite this simplicity, it is possible
to achieve behaviors with surprising levels of complexity similar
to that of animals. Velo is designed to be used in a curriculum that
aims to help learners not only learn this programming model, but
also the process of analyzing existing behaviors and breaking it
down into a form useful for programming.

2 DESIGN GOALS

Our goal is to create a learning experience that helps children aged
13-16 learn how to analyze animal behaviors using the model of
Braitenberg vehicles, and how to apply that knowledge to build
their own computer models. Velo is intended to be used as a part
of a multi-modal, simulation, and robotics based curriculum that
encourages learners to bridge their knowledge about animals and
their behaviors with robotics and computer programming. The cur-
riculum includes activities that guide students through the process
of observing animal behaviors, breaking them down into simple
rules, and finally encoding those rules in a program. Construction-
ist design principles [9] are used as the foundation for students to
build upon the idea that even simple sensory inputs, along with
equally simple neural connections, can lead to seemingly complex

https://doi.org/10.1145/3585088.3594489
https://doi.org/10.1145/3585088.3594489
https://doi.org/10.1145/3585088.3594489
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585088.3594489&domain=pdf&date_stamp=2023-06-19

IDC °23, June 19-23, 2023, Chicago, IL, USA

Animal
Behavior

Robotics Simulation

Programming

v

Figure 1: The overall conceptual structure of the system.

behaviors. Our simulator allows for these neural connections to be
created in an easily digestible manner. The resulting behavior can
then be studied within a customized environment with relevant
stimuli. Further, we provide a robotics platform that can be used to
study the same sensor-actuator neural connections used within the
simulation in a physical robot. Keeping consistent with construc-
tionist principles, this robot is designed as a platform to be used by
learners for exploration, and can change in both form and function.

3 RELATED WORK
3.1 Braitenberg Vehicles

Braitenberg vehicles are robots designed to sense, think, and act
using some of the most simple sensor-actuator neural connections
possible. Despite the simplicity of the robot, complex behaviors
similar to living organisms begin to emerge. Take, for example, the
simple sensor-actuator neural configuration shown in Fig. 2 with
a positive linear correlation between light sensors and wheels. As
each sensor is exposed to more light, the speed of the wheel on
the same side increases, thus sending the vehicle away from the
light source. This behavior could be likened to that of a cockroach,
where when a light switch is turned on, the roach being scared
of the light, tries to run away as fast as possible. By changing the
sensor-actuator correlations to include functions such as thresholds
or non-linear relations, the types of animal behaviors that can be
effectively mimicked and explored by students greatly increases.

3.2 Robotics and Simulation in Education

Robotics and simulation are powerful technological tools that, when
utilized in educational settings, provide effective mediums for study-
ing common or advanced topics [15]. With the tangibility and con-
creteness of robotics platforms, children as young as kindergarten
age have been found to develop basic understandings of topics such
as emergent behavior and general systems control [7]. Similarly,
computer simulations have provided a platform for restructuring
the methods with which advanced topics such as Newtonian physics
and statistical mechanics are taught [16]. With the introduction of
robotic platforms such as Cubelets [11], and agent-based simulation

702

Mongkhonvanit, Hummer, and Chen

Figure 2: A simple Braitenberg vehicle with direct connec-
tions between sensors and motors on the same side.

programs like NetLogo[14], robotics and simulation platforms for
use within educational settings are more accessible than ever. This
accessibility allows experiences, like Velo, to explore new subject
areas such as animal behavior.

3.3 Domain-specific Visual Programming

Visual programming languages allow users to construct programs
by manipulating graphical representations of programming con-
structs. This approach can help overcome novice programmers’
difficulties with syntax, allowing them to focus on the logic and
structure involved in programming [2]. Examples of visual program-
ming languages include Google Blockly[3], Scratch[10], NetTango
Web[4], and DeltaTick[17], among others. Visual programming
languages have been successfully used and found to be effective in
educational contexts[13].

Domain-specific visual programming presents a novel way of
designing programming environments for novices. For example,
NetTango Web and DeltaTick allow complex systems modelers
to design blocks for a specific domain (such as ants foraging or
virus spreading) without invoking additional cognitive load of pro-
gramming concepts([8, 17]. Such platforms encourage designers and
learners to focus on the micro-level behaviors of individual compo-
nents in complex systems, the domain-specific knowledge, instead
of introductory computer science concepts. Consequently, children
in museums were found capable to program frogs’ behaviors within
the first 3 minutes of interaction and engage in complex systems
thinking [5].

4 DESIGN

The design of the system is guided by the conceptual structure
shown in Fig. 1. The main concepts involved in the design are animal
behavior, robotics, simulation, and programming. The arrows in the
figure show how these concepts interact with each other within the
system. In one direction, learners leverage their programming skills
to make use of the robotics and simulation components. Through

Velo: Exploring Animal Behavior Modeling through Hybrid Robotics-Simulation Learning Experience

Actuators

Right Motor

Sensors

Figure 3: The programming interface.

braitenberg - NetLogo {/heme/kritphong/cs496/braitenberg} x
File Edit Tools Zoom Tabs Help

Interface | Info | Code

slower

view updates
oo A e]| ‘ el
noeee ticks: 1887 L .

N

Setup

Add Light Source

‘I

TURN-COEFF 1

‘

STEP-SIZE 0.1

CODE
[io 1111 o

e
v

Command Center 2 |[Ceer
Y

E

v

observers -

Figure 4: The Braitenberg vehicle simulator.

this process, they gain new understandings of animal behaviors.
In the opposite direction, learners use knowledge about animal
behavior as a foundation. This knowledge then guides their decision
about how to best program the robots and simulator to match the
behavior of their animal models. In doing so, they learn about
programming strategies that can be used to realize their designs.

4.1 Programming Interface

Velo provides a web-based programming interface that learners can
use to program both the robots and the simulation. The interface
consists of two columns of sensors and actuators. A sensor represents
a sensor that the robot could read data from. Similarly, an actuator
represents a device that the robot can use to perform an action. In
the current design iteration, the sensors included are light sensors
and proximity sensors. For actuators, only motors are included.

703

IDC °23, June 19-23, 2023, Chicago, IL, USA

However, the system can be easily configured to support other
kinds of sensors and actuators.

Programming is done when children connect sensors to actuators.
Each sensor can provide its input to multiple actuators. Likewise,
an actuator can receive inputs from multiple sensors. Programs are
executed by continuously reading values from each sensor, and
using the read value to determine how actuators connected to it
should be activated. In the case of motors, the higher the values
read from the sensors, the faster it turns. If an actuator has multiple
sensor connections, the sensor with the highest reading is used.

Making these connections is the only programming construct
available. The programming environment does not rely on common
programming constructs such as loops, conditionals, or sequenc-
ing. This has two main benefits. First, the simplicity makes the
programming environment easy to learn. Second, it ensures that
all programs built in this environment adhere to the model of Brait-
enberg Vehicles.

4.2 Simulator

The simulator is implemented in NetLogo[14]. The interface con-
tains buttons that can be used to initialize the simulation, add light
sources, and run the simulation. Light sources can be moved around
freely through drag-and-drop operations. There are two sliders that
control two variables: TURN-COEFF and STEP-SIZE. TURN-COEFF
controls how much a motor causes the vehicle to turn with re-
spect to the amount of light measured by its corresponding sensors.
STEP-SIZE controls how much the vehicle moves at each time step,
i.e. how fast it moves. The text box labeled CODE is used to configure
the connections between light sensors and motors on the vehicle.

4.3 Robot

The robotic platform is designed to be the physical embodiment
of the vehicles simulated in the NetLogo environment. The body
of the robot consists of a hexagonal base, six vertical walls with
holes for mounting sensors and motors, 3D printed motor-mount
housings for the DC motors, and an open hexagonal top rack for
mounting the GoGo Board 6 [12]. The prototype shown in Fig.
5 is constructed using laser-cut acrylic pieces, but is designed to
be modular in nature, allowing users to build it out of any flat
material available to them with the help of the design templates.
The locations of the holes, save for those necessary to mount the
motors on each wall, can be chosen arbitrarily to further the number
of possible designs and interactions achievable.

5 CONCLUSIONS AND FUTURE WORK

We presented Velo, a hybrid robotics-simulation learning experi-
ence that helps children bridge their interest in animals with pro-
gramming. Velo consists of three main components: the robot, the
simulator, and the programming environment. The programming
environment provides a single programming construct, i.e. con-
nections between sensors and actuators, that ensures all programs
constructed this way are compatible with the model of Braitenberg
vehicles. The simulator helps learners quickly test and iterate on
their ideas, and the robot allows them to realize their visions in the
real world. Velo is designed to be used in a curriculum that involves

IDC °23, June 19-23, 2023, Chicago, IL, USA

Figure 5: The robotic platform.

analysis and modeling of animal behaviors. By engaging in activ-
ities in the curriculum, using Velo as the platform, learners will
become aware of the connection between animal behavior, robotics,
and programming, as well as develop a number of practical skills
in these areas.

In future iterations, we plan to make it possible to code more
complex behaviors by implementing functionality to represent non-
linear relationships between sensors and actuators. This would in-
crease the flexibility of programs that could be created, making
it possible to model more complex animal behaviors [1]. We are
also looking to extend the simulator to support multiple vehicles,
allowing learners to explore interactions between vehicles.

ACKNOWLEDGMENTS

We would like to thank Uri Wilensky, Jacob Kelter, Yinmiao Li, and
Lexie Zhao for their help and support along the way.

REFERENCES

[1] Valentino Braitenberg. 1986. Vehicles: Experiments in synthetic psychology. MIT
press.

[2] Po-Yao Chao. 2016. Exploring students’ computational practice, design and
performance of problem-solving through a visual programming environment.
Computers & Education 95 (2016), 202-215. https://doi.org/10.1016/j.compedu.
2016.01.010

[3] Neil Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). 49-50. https://doi.org/10.1109/BLOCKS.
2015.7369000

[4] Michael S. Horn, Jeremy Baker, and Uri J. Wilensky. 2020. NetTango Web. https:
//netlogoweb.org/nettango-builder

[5] Michael S. Horn, Corey Brady, Arthur Hjorth, Aditi Wagh, and Uri Wilensky.
2014. Frog Pond: A Codefirst Learning Environment on Evolution and Natural
Selection. In Proceedings of the 2014 Conference on Interaction Design and Children
(Aarhus, Denmark) (IDC ’14). Association for Computing Machinery, New York,
NY, USA, 357-360. https://doi.org/10.1145/2593968.2610491

[6] Stephen R. Kellert. 1985. Attitudes toward Animals: Age-Related De-
velopment among Children. The Journal of Environmental Education
16, 3 (1985), 29-39. https://doi.org/10.1080/00958964.1985.9942709
arXiv:https://doi.org/10.1080/00958964.1985.9942709

[7] D Mioduser, ST Levy, and V Talis. 2002. Kindergarten children’s perception of
robotic-control rules. In Intl Conf Learning Sciences.

[8] Izabel C Olson and Michael S Horn. 2011. Modeling on the table: agent-based mod-
eling in elementary school with NetTango. In Proceedings of the 10th International
Conference on Interaction Design and Children. 189-192.

[9] Seymour Papert and Idit Harel. 1990. Situating constructionism. (1990).

704

Mongkhonvanit, Hummer, and Chen

[10

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),

60-67.

[11] Eric Schweikardt and Mark D Gross. 2008. Learning about complexity with
modular robots. In 2008 Second IEEE International Conference on Digital Game
and Intelligent Toy Enhanced Learning. IEEE, 116-123.

[12] Arnan Sipitakiat, Paulo Blikstein, and David P Cavallo. 2004. GoGo board:
augmenting programmable bricks for economically challenged audiences. (2004).

[13] José-Manuel Saez-Lopez, Marcos Roman-Gonzalez, and Esteban Vazquez-Cano.
2016. Visual programming languages integrated across the curriculum in elemen-
tary school: A two year case study using “Scratch” in five schools. Computers &
Education 97 (2016), 129-141. https://doi.org/10.1016/j.compedu.2016.03.003

[14] Seth Tisue and Uri Wilensky. 2004. NetLogo: Design and implementation of

a multi-agent modeling environment. In Proceedings of the Agent, Vol. 2004.

Springer Cham, Switzerland, 7-9.

Sokratis Tselegkaridis and Theodosios Sapounidis. 2021. Simulators in educa-

tional robotics: A review. Education Sciences 11, 1 (2021), 11.

[16] Uri Wilensky and Seymour Papert. 2010. Restructurations: Reformulations of

knowledge disciplines through new representational forms. Constructionism 17

(2010), 1-15.

Michelle Hoda. Wilkerson-Jerde. 2012. The DeltaTick Project: Learning Quanti-

tative Change in Complex Systems with Expressive Technologies.

[15

[17

A DEMO PRESENTATION FORMAT

A video detailing how the demo will be presented can be found
here: https://drive.google.com/file/d/1-dagh80vk1uDtREZ9Es1Y _
rO2QlYJWIK/view?usp=sharing.

https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/BLOCKS.2015.7369000
https://netlogoweb.org/nettango-builder
https://netlogoweb.org/nettango-builder
https://doi.org/10.1145/2593968.2610491
https://doi.org/10.1080/00958964.1985.9942709
https://arxiv.org/abs/https://doi.org/10.1080/00958964.1985.9942709
https://doi.org/10.1016/j.compedu.2016.03.003
https://drive.google.com/file/d/1-dagh80vk1uDtREz9Es1Y_rO2QlYJWlK/view?usp=sharing
https://drive.google.com/file/d/1-dagh80vk1uDtREz9Es1Y_rO2QlYJWlK/view?usp=sharing

	Abstract
	1 Introduction
	2 Design Goals
	3 Related Work
	3.1 Braitenberg Vehicles
	3.2 Robotics and Simulation in Education
	3.3 Domain-specific Visual Programming

	4 Design
	4.1 Programming Interface
	4.2 Simulator
	4.3 Robot

	5 Conclusions and Future Work
	Acknowledgments
	References
	A Demo Presentation Format

