Measuring Young Learners” Open-ended Agent-based
Programming Practices with Learning Analytics |

John Chen Uri Wilensky

Abstract

Agent-based modeling (ABM) has been recognized as an important component of computational
thinking and literacy. Agent-based programming (ABP) is the computational foundation of ABM. In
this study, we propose a novel method to programmatically measure young learners” ABP practices in
open-ended programming contexts with a 4-stage model. We present results from the online commu-
nity of Turtle Universe, a new version of NetLogo designed for mobile platforms and younger learners
in informal contexts. We draw on a dataset of 2,300 block-based and text-based projects shared by
out-of-school, unsupervised learners. Our approach generally succeeded in measuring learners” open-
ended ABP practices. Differences were found among projects of different stages and modalities. We
discuss the implications of our approach and design of block-based ABP environments.

Keywords: Agent-based Programming; Agent-based Modeling; Learning Analytics; Open-ended Learning Con-
texts; Online Learning Communities

1 Introduction

Computational modeling, especially agent-based modeling (ABM), has been recognized as a key compo-
nent of computational thinking and literacy (Wilensky, Brady, & Horn, 2014; |Wilensky & Resnick) 1999).
In recent years, agent-based modeling and programming practices have been extensively studied. Since
ABM naturally combines with scientific disciplines, it has been widely studied, accepted, and imple-
mented in school and non-school contexts.

All agent-based models are implemented by agent-based programming (ABP), or agent-oriented pro-
gramming (Shoham) 1993). As such, the learning of ABP becomes an essential part of ABM learning
(Gilbert & Terna) 2000). While many studies of ABM in learning have focused on measuring the disci-
plinary or mathematical aspects of learning (e.g., Blikstein| (2011); Wilkerson-Jerde and Wilensky| (2015)),
some studies also emphasized the programming aspect of ABM (e.g., Berland, Martin, Benton, Petrick
Smith, and Davis| (2013); Blikstein! (2011); Weintrop et al.|(2016)). They made important progress in help-
ing researchers and educators understand, support, and scale the learning of ABM or ABP in a variety of
learning contexts.

Although the implementation of ABM in learning would naturally involve ABP, many previous stud-
ies only used questionnaires or interviews to measure ABM learning (e.g., Musaeus and Musaeus| (2019)).
When program code is included in the analysis, the analysis either relies on a specific disciplinary learning
context (e.g. Wagh, Cook-Whitt, and Wilensky! (2017)) or relates to general programming instead of ABP
(e.g. Blikstein|(2011)). Hence, an approach is needed to understand learners” ABP practices in open-ended
programming contexts.

In this paper, we introduce a novel learning analytics method for achieving this goal. We were in-
formed by extensive previous research on learning analytics in constructionist learning environments
(Berland, Baker, & Blikstein, [2014) and studies that programmatically measure learning through coding
processes or results (e.g., Berland, Davis, and Smith| (2015); Tissenbaum and Kumar (2019)). Instead of

focusing on basic computational concepts or coding processes, we designed our approach specific enough

“Submission to the 2023 American Educational Research Association Annual Meeting

to focus on ABP, but general enough to cover different programming contexts including learner-driven
open-ended ones. To achieve this, we propose an automated 4-stage model that could identify ABP prac-
tices from any NetLogo model. Using this model, we answer the following research question:

What are some characteristics of young learners” out-of-school, unsupervised ABP practices in Turtle

Universe’s online community?

[Turtle Universe| (previously NetLogo Mobile) is a new incarnation of NetLogo that aims to bring ABP

into out-of-school, unsupervised learning contexts (Chen & Wilensky, 2020} 2022). It supports both text-
based and block-based variants of NetLogo (Horn, Brady, Hjorth, Wagh, & Wilensky, 2014; Wilensky,
1999). In the past 12 months, 56,000 young learners started to use Turtle Universe and shared 2,300
projects based on their own goals and interests. We present empirical findings based on learners’ original
projects from the online community of Turtle Universe. Then, we discuss the implications for learning

analytics and the design of learning environments.

2 Methodology

The online community of Turtle Universe supports young learners’ sharing and remixing of NetLogo
projects. As we did not prescribe concrete learning or programming goals, learners shared a wide range
of NetLogo projects with different goals, programming styles, and levels of complexity. Different from
other NetLogo versions, most young learners used Turtle Universe in informal learning contexts. Thus,
our dataset from Turtle Universe community’s shared projects provides a diverse sample set to apply
our novel approach. Similar to the Scratch community, many learners remixed models from the models
library or other learners” projects and shared the remixed projects with the community. While our ap-
proach could also work for those projects, in this study, we first focus on original projects. We defined
original projects as projects that are completely new or made substantial changes to their parent project.

We calculated each project’s distance from its parent project and produced histograms for text-based
and block-based projects. Based on the histogram (Fig. [I), we used 50% as the cut-off value for text-based
projects. Block-based projects are all remixes of several base models, which are either domain-specific
or provide a subset of NetLogo features. Since block-based projects often include chunks of code from
the base model, we lowered the threshold for original projects to 20%. We ended up with 1,055 original
text-based projects from 175 authors and 447 original block-based projects from 166 authors.

Based on previous studies of ABP in computer science, we categorized all NetLogo projects into four
conceptual stages (Table. , from without any agent (stage 0), only using single agents (stage 1), to
simple (stage 2), branching (stage 3), and communicative ABP (stage 4). To programmatically apply our
conceptual model, we parsed each project’s code into a simplified abstract syntax tree (AST) to understand
the logical structure of the NetLogo code. Then, we transformed our definition into programmatic rules
and applied on ASTs with Javascript.

To verify our approach, we first applied our programmatic rules to 83 models from Turtle Universe’s
models library. Most models come from NetLogo’s models library, with a few additional models focusing
on introducing TU’s unique features. As expected, ABP practices were identified in all models, and the
majority of models were in stages 3 (39%) and 4 (45%). Then, we manually verified the results with
randomly sampled projects and models. In all but one case, our automatic learning analytics approach
matches manual categorization. The only exception happened when a learner initialized the modeling

world with agents, but then used non-agent-based approaches for most other parts of her project.

2

To understand the learners” purposes and ways learners programmed in different stages, we ran-
domly sampled cases from each stage and thematically coded them until reaching theoretical saturation.
To examine whether different stages have implications on code readability and complexity, we measured
each project using metrics from previous studies (e.g. Vendome, Rao, and Giabbanelli| (2020)). We mea-
sured the readability of code using average line length, average procedure length, and the number of
comments; and complexity of code using numbers of procedures, conditionals, loops, and unique token.
To compare projects of different stages, we use Kruskal-Wallis (non-parametric) one-way ANOVA and
Dunn’s pairwise test to examine if each metric is significantly different between groups.

Below, we first report the distribution of stages among block-based and text-based projects, then re-
port the differences in readability and complexity metrics between block-based and text-based projects of

different stages.

3 Results

3.1 Distribution of Stages

In this section, we report the distribution of stages among block-based and text-based projects and the
learners who authored and shared them.

Block-based Projects. We found that every block-based project included some ABP practices. Distri-
butions of both projects (Fig. [2) and authors (Fig. [3) show that more learners stayed at the earlier stages
and less at later stages. Here, the technological design of Turtle Universe may have played an important
role. While all block-based models in TU support ABP practices, a few of learner projects used ones (e.g.
Martin, Bain, Swanson, Horn, and Wilensky| (2020)]) that only support practices up to stage 3, leaving
learners unable to engage with stage 4 practices.

Text-based Projects. However, text-based projects show a very different pattern. We found that more
projects and authors were at later stages than at earlier stages. In addition, we saw projects without ABP
practices and found that they were creatively coded for learners” design goals. In Fig. 2| and Fig |3, we
could see the same increasing trend for projects and authors of text-based programming.

As expected, most stage 2, 3, 4 projects were for creating agent-based animations, pictures, and games
based on emergence with different levels of complexity. Surprisingly, we found that 14% of projects
belonging to stage 0, i.e., used no agents at all. We closely examined those projects and found that they

were used:

* As a social space. For example, in the “A question about movement of balls” project, the learner

only used ‘user-message’ to show a question to anyone who would enter the project.

* To demonstrate non-agent-based media. In the “Walnut Rock (GIF+Music)” (Fig. E]) project, the

learner used a loop to display a sequence of drawings and played music alongside the animation.

* As a container for obfuscated code that we cannot parse. Some learners were protective of their
intellectual property and decided to hide the (sometimes encrypted) code in global variables, which

could be shared together with code in projects.

Another 3% of projects belonged to stage 1, i.e., their code talked to agents but only individually.
We found that those projects were used to create animations or pictures in approaches more in line with

Turtle Geometry. For example, the “Special Light for Disco” draws a changing pattern that reacts to touch

3

interaction. The “Transforming a Circle into a Square” (Fig. 5) project first calculates a list of parameters
and then uses several turtles, each to draw a segment of the curve.

3.2 Complexity and Readability

Due to space constraints, we only report the complexity and readability metrics of text-based projects in
this proposal. We found that all complexity metrics of code remarkably increased in each stage between
2-4, yet stage 1 non-agent-based projects were an outlier. For readability, while we did not find a trend
between stages, comparisons were made between learners’ projects and experts” models.

Complexity. Fig. [f|shows the different complexity metrics between stages of text-based projects. All
metrics (number of procedures, conditionals, loops, and unique tokens) significantly increased between
stage 2-4 projects (pairwise p<0.05). To our surprise, except for loops where the difference is not signifi-
cant, stage 1 projects were significantly more complex than stage 2 (p<0.05). In addition, we found that
all stage 1 project authors (n=8) also shared projects of stages 2, 3, 4, implying that they could be more
advanced learners.

Readability. Fig. [7]demonstrates the different readability metrics between learners’ projects and ex-
perts’ models. While we did not find significant differences between the average length of line and proce-
dure, learners’ projects had significantly fewer comments than experts” models (p<0.05). The same results
were found across every stage. Learners’ projects were also much more diverse than experts” models in

all three metrics, showing a variety of personal programming styles.

4 Discussion

While learners were sharing projects for their personal goals without prescribed curricular goals, our
novel approach generally succeeded in measuring their open-ended ABP practices. However, researchers
and practitioners should be cautious about the implications of our stage-based model. First, stage 0
projects come as a surprise. In an open-ended setting, it is surprising but also predictable that children
will leverage constructionist learning environments with purposes that designers would never envision.
In our case, we found that children mostly used for social and media purposes.

Second, while the four stages were designed as a linear scale, we found that learners with stage 1
projects were likely to be more advanced learners. One possible explanation is the design of the program-
ming language or space: both text-based NetLogo language and block-based NetTango programming
spaces prioritize multi-agent programming over programming of individual agents. Also, while we no-
ticed the statistical trend between stages, individual projects differ greatly from each other. As a result,
stages do not strictly correspond with code complexity. This further necessitates our future work to un-
derstand trajectories, in addition to a deeper analysis of the end results, of learners” ABP practices.

Finally, our results point to the design of learning environments. We found that more block-based
projects stayed at the periphery stages than text-based projects. One reason is that while text-based
and block-based NetLogo programming both strive to be low threshold and high ceiling, the position
of threshold and ceiling could be conceptually different. While block-based ABP environments tend to be
more simple than text-based counterparts and focus more on domain-specific contents, it is still important
for researchers and educators to think about which stages are made possible through each design. While
certain disciplinary contexts might only necessitate stage 2 or 3, it could still be beneficial to design rooms
for learners to venture into higher ABP stages as well.

For researchers who are interested in the dataset we used, please reach out to civitas@u.northwestern.edu.

References

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: Applica-
tions to constructionist research. Technology, Knowledge and Learning, 19(1), 205-220.

Berland, M., Davis, D., & Smith, C. P. (2015). AMOEBA: Designing for collaboration in computer science
classrooms through live learning analytics. International Journal of Computer-Supported Collaborative
Learning, 10(4), 425-447.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to
understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4),
564-599.

Blikstein, P. (2011). Using learning analytics to assess students” behavior in open-ended programming
tasks. In Proceedings of the 1st international conference on learning analytics and knowledge (pp. 110-116).

Chen, J., & Wilensky, U. (2020). NetLogo Mobile: An Agent-Based Modeling Platform and Community
for Learners, Teachers, and Researchers.

Chen, J., & Wilensky, U. (2022). Turtle Universe. Evanston, IL: Center for Connected Learning and
Computer-Based Modeling, Northwestern University.

Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind & Society,
1(1), 57-72.

Horn, M. S,, Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog pond: a codefirst learning
environment on evolution and natural selection. In Proceedings of the 2014 conference on interaction
design and children (pp. 357-360).

Martin, K., Bain, C., Swanson, H., Horn, M., & Wilensky, U. (2020). Building blocks: kids designing
scientific, domain-specific, block-based, agent-based microworlds. In International conference of the
learning sciences (2020).

Musaeus, L. H., & Musaeus, P. (2019). Computational thinking in the Danish high school: Learning
coding, modeling, and content knowledge with Netlogo. In Proceedings of the 50th acm technical
symposium on computer science education (pp. 913-919).

Shoham, Y. (1993). Agent-oriented programming. Artificial intelligence, 60(1), 51-92.

Tissenbaum, M., & Kumar, V. (2019). See the Collaboration Through the Code: Using Data Mining and
CORDTRA Graphs to Analyze Blocks-Based Programming.

Vendome, C., Rao, D. M., & Giabbanelli, P. J. (2020). How do modelers code artificial societies? investigat-
ing practices and quality of netlogo codes from large repositories. In 2020 spring simulation conference
(springsim) (pp. 1-12).

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism:
Exploring the alignment between students tinkering with code of computational models and goals
of inquiry. Journal of Research in Science Teaching, 54(5), 615-641.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of science education and
technology, 25(1), 127-147.

Wilensky, U. (1999). NetLogo. Evanston, IL: Center for connected learning and computer-based modeling, North-
western University.

mailto:civitas@u.northwestern.edu

Table 1: Definitions of 4 conceptual stages.

Stage | Category Definition

Stage 0 | Non-agent The project does not explicitly use agents.

Stage 1 | Single-agent The project only deals with one agent at a time.

Stage 2 | Simple multi-agent The project only deals with all agents or individual agents at
a time.

Stage 3 | Branching multi-agent The project deals with multiple agents with branching or fil-
tering. However, each agent does not talk to another.

Stage 4 | Communicative multi-agent | The project deals with multiple agents, and individual
agents talk to one another.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms.
Communications of the ACM, 57(8), 24-28.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of
the world. Journal of Science Education and technology, 8(1), 3-19.

Wilkerson-Jerde, M. H., & Wilensky, U. J. (2015). Patterns, probabilities, and people: Making sense of
quantitative change in complex systems. Journal of the Learning Sciences, 24(2), 204-251.

sed block-Dased

Count

-
PR P oo - - - na - Y - A Az A ne o=

g bl o U.a L& Uz (LR~} L0 jel Ll L.e L.3 L.z =

oo
r

Delta A Delta A

Figure 1: Distribution of difference among learners’ projects.

Stage / Format Format
. Text-based

0 1 2 3 4
Elock-based
50% 45%
33%
PR 30%
o S0 - r
E 27%
[=] - r
& 23% 22%
14%
3%
Text-based Text-based Text-based Elock-based Text-based Elock-based Text-based Elock-based
Figure 2: Stage Distribution of Learners’ Shared Projects.
Format
Stage-Author B Toxt-basec
Stage [/ Format Block-based
0 1 2 3 4
B 60% 62%
47%
43%
. A0%
- 34%
L]
I

Figure 3: Stage Distribution of Learners with Shared Projects.

EB="Qad

8 to setup
ca
let i 1 set s 0 set listl []
while [i <= 50]
12 [set listl insert-item @ listl (pi * 3 * i / 50)
set 1 i+ 1]
iz set listl reverse listl
end

> to go
1 cd ct
18 if s <= 49
filg [let m item s listl
2 crt 1
[
set color red
setxy (m/ 2+ 6 -2 *m/ pi) 0 set heading @
pd
24 fdm/ 2
25 repeat 90 [rotatem / 2 m / 2 1]
2 set heading 270 fd m
2 repeat 90 [rotate @ -m / 2 m / 2 1]
8 set heading 180 fd m
repeat 90 [rotate @ -m /20 -m/ 2 1]
set heading 90 fd m

Figure 4: An example Stage 0 project by Weijia Li.

Value %

a
(=]

2

-

A w N

Figure 5: An example Stage

Em=~aa

extensions [import-a sound workspace widget] globals
[st? frame ins sp bt vl ml ml2 data]
to startup workspace:play end
to set-up

let pdata data let pml ml let pml2 ml2 let ps st?
ca set data pdata set ml pml set ml2 pml2 set st? ps
pl set-patch-size 15

end
to go
if st? = 0 [set st? 1 set-up]
set-patch-size 20 + 3 * sin (360 * 1.8 * timer)
workspace:set-speed 1.8
cd import-a:pcolors-rgb item frame data
set frame (frame + 1) mod length data
every 16 [pl]
end
to pl
set bt 0 set vl 100 set ins "ATMOSPHERE" set sp

132 foreach ml [i -> ifelse int i > @ [pn int i (10
* (1 - int 1))] [rest (10 * (i - int 1))]] set bt @
foreach ml2 [i -> ifelse int i > @ [pn int 1 (1@ *
(i - int i))] [rest (1@ * (i - int i))]]

end
to pn [pin len]

1 project by Brainchon.

Stage
aure Conditiona Loop
. :
— ’
. . . '
i il .
= :I: = E = = 1 = = =% :l: ca

Frojects

Figure 6: Complexity Metrics of Text-based Projects.

Linefivg P3iz

Model

.'. 1
:

Figure 7: Readability Metrics of Text-based Projects

omment

=
-]

m

b

n

	Introduction
	Methodology
	Results
	Distribution of Stages
	Complexity and Readability

	Discussion

